Int. J. Contemp. Math. Sciences, Vol. 4, 2009, no. 5, 241 - 245

Another Isomorphism Theorem on Anti-ordered Semigroups¹

Duško Bogdanić

Mathematical Institute, University of Oxford, UK dusko.bogdanic@queens.ox.ac.uk

Siniša Crvenković

Department of Mathematics and Informatics Novi Sad University, Serbia sima@eunet.yu

Daniel Abraham Romano

Department of Mathematics and Informatics Banja Luka University, Bosnia and Herzegovina bato49@hotmail.com

Abstract

In this paper we give another isomorphism theorem on anti-ordered semigroups.

Mathematics Subject Classification: Primary: 03F65; Secondary: 20M10

Keywords: constructive mathematics, semigroup with apartness, antiorder, quasi-antiorder, isotone and reverse isotone homomorphism, isomorphism

1 Introduction and preliminaries

Our setting is the Bishop's constructive mathematics ([1], [2], [7]). Let $(S, = , \neq, \cdot)$ be a semigroup with apartness in the sense of paper [3], where ' \neq ' is a binary relation on X which satisfies the following properties

¹Partially supported by the Ministry of science and technology of the Republic of Srpska, Banja Luka, Bosnia and Herzegovina

$$\neg (x \neq x), \ x \neq y \Longrightarrow y \neq x, \ x \neq z \Longrightarrow x \neq y \lor y \neq z, x \neq y \land y = z \Longrightarrow x \neq z$$

and

$$(\forall a, b, x \in S)((ax \neq bx \Longrightarrow a \neq b) \land (xa \neq xb \Longrightarrow a \neq b)).$$

The apartness is *tight* if $\neg (x \neq y) \Longrightarrow x = y$ holds. Let Y be a subset of S and $x \in S$. The subset Y of S is *strongly extensional* in S if and only if $y \in Y \Longrightarrow y \neq x \lor x \in Y$ holds ([2],[8]). If $x \in S$, we defined ([3]) $x \bowtie Y \iff (\forall y \in Y)(y \neq x)$. Let $f : (S, =, \neq, \cdot) \longrightarrow (T, =, \neq, \cdot)$ be a mapping. We say that it is:

(a) f is strongly extensional if and only if $(\forall a, b \in S)(f(a) \neq f(b) \Longrightarrow a \neq b)$; (b) f is an embedding if and only if $(\forall a, b \in S)(a \neq b \Longrightarrow f(a) \neq f(b))$. Let $\alpha \subseteq S \times T$ and $\beta \subseteq T \times Z$ be relations. The filled product ([3]) of relations

 α and β is the relation

$$\beta * \alpha = \{ (a, c) \in S \times Z : (\forall b \in T) ((a, b) \in \alpha \lor (b, c) \in \beta \}.$$

A relation $q \subseteq S \times S$ is an *anticongruence relation* on S if and only if holds:

$$q \subseteq \neq, q \subseteq q^{-1}, q \subseteq q * q,$$
$$(\forall a, b, x \in S)(((ax, bx) \in q \Longrightarrow (a, b) \in q) \land ((xa, xb) \in q \Longrightarrow (a, b) \in q)).$$

If q is an anticongruence on semigroup $(S, =, \neq, \cdot)$, we can construct factorsemigroup $(S/q, =_1, \neq_1, \cdot_1)$ with

$$aq =_1 bq \Longleftrightarrow (a,b) \bowtie q, aq \neq_1 bq \Longleftrightarrow (a,b) \in q, (aq) \cdot_1 (bq) = (ab)q.$$

A relation α on S is *antiorder* ([4]) on S if and only if

$$\alpha \subseteq \neq, \alpha \subseteq \alpha * \alpha, \neq \subseteq \alpha \cup \alpha^{-1},$$
$$(\forall a, b, x \in S)(((ax, bx) \in \alpha \Longrightarrow (a, b) \in \alpha) \land ((xa, xb) \in \alpha \Longrightarrow (a, b) \in \alpha)).$$

Let $f: (S, =, \neq, \cdot, \alpha) \longrightarrow (T, =, \neq, \cdot, \beta)$ be a strongly extensional homomorphism of ordered semigroups under antiorders. f is called *isotone* if $(\forall x, y \in S)((x, y) \in \alpha \Longrightarrow (f(x), f(y)) \in \beta)$; f is called *reverse isotone* if and only if $(\forall x, y \in S)((f(x), f(y)) \in \beta \Longrightarrow (x, y) \in \alpha)$. The strongly extensional mapping f is called an *isomorphism* if it is injective and embedding, onto, isotone and reverse isotone. S and T called *isomorphic*, in symbol $S \cong T$, if exists an isomorphism between them.

As in [4] a relation $\tau \subseteq S \times S$ is a *quasi-antiorder* on S if and only if

$$\tau \subseteq \alpha (\subseteq \neq), \ \tau \subseteq \tau * \tau$$
$$(\forall a, b, x \in S)(((ax, bx) \in \alpha \Longrightarrow (a, b) \in \alpha) \land ((xa, xb) \in \alpha \Longrightarrow (a, b) \in \alpha)).$$

For more information on these relations readers can see in the papers [4]-[7].

The first proposition gives some information about quasi-antiorders:

Lemma 1.1 ([4]) Let $(S, =, \neq, \cdot)$ be an anti-ordered semigroup and τ is a quasi-antiorder on S. Then, the relation $q = \tau \cup \tau^{-1}$ is an anticongruence on S, and $S/q = \{aq : a \in S\}$ with the anti-order $(aq, bq) \in \theta \iff (a, b) \in \tau$ $(a, b \in S)$ is an anti-ordered semigroup and $\pi : S \longrightarrow S/q$, defined by $\pi(a) = aq$, is an reverse isotone strongly extensional homomorphism from S onto S/q.

Lemma 1.2 ([6], [7]) Let $(S, =, \neq, \cdot, \alpha)$ and $(T, =, \neq, \cdot, \beta)$ be anti-ordered semigroups and $\varphi : S \longrightarrow T$ an reverse isotone strongly extensional homomorphism. Then,

$$\varphi^{-1}(\beta) = \{(a,b) \in X \times X : (\varphi(a),\varphi(b)) \in \beta\}$$

is a quasi-antiorder on S with $\varphi^{-1}(\beta) \cup (\varphi^{-1}(\beta))^{-1} = Coker\varphi$, and if the apartness in T is tight, then $S/Coker \cong Im\varphi$ as anti-ordered sets.

Let $(S, =, \neq, \cdot, \alpha)$ be an anti-ordered semigroup. A quasi-antiorder σ on S is called a *quotient quasi-antiorder* (abbreviated to Q-quasi-antiorder) on S ([7]) if holds

$$\sigma \subseteq \alpha \subseteq q^C \circ \sigma \circ q^C.$$

If q is an anticongruence on anti-ordered semigroup $(S, =, \neq, \cdot, \alpha)$, then the semigroup S/q is not an anti-ordered semigroup, in general case. By result in [5], the relation $\pi \circ \alpha \circ \pi^{-1}$ is an antiorder on S/q if and only if the relation $\tau = q^C \circ \alpha \circ q^C$ is a quasi-antiorder on S such that $q = \tau \cup \tau^{-1}$. In papers [4], [6] and [7] the third author described some isomorphisms between ordered sets under antiorders. This paper is a continuation of [7]. Here, we give another isomorphism theorem on anti-ordered semigroups.

2 The Results

Let $(S, =, \neq, \cdot, \alpha)$ be an anti-ordered semigroup, τ a quasi-antiorder on S under α and $(T, =, \neq, \cdot)$ a subsemigroup of S. Let $T_s = \bigcup \{ (\pi^{-1} \circ \pi)(x) : x \in T \}$. It is clear that $T \subseteq T_s$. It is clear that the following equivalence holds: $a \in T_s \iff (\exists x \in T)((x, a) \bowtie q)$. Our first result is:

Theorem 2.1 : Let $(S, =, \neq, \cdot, \alpha)$ be an anti-ordered semigroup such that $\theta = \pi \circ \alpha \circ \pi^{-1}$ is an anti-order on S/q where $q = \pi^{-1}(\theta) \cup (\pi^{-1}(\theta))^{-1}$ is an anticongruence on S. If T is a subsemigroup of S, then T_s is a subsemigroup of S and $\tau = \pi^{-1}(\theta)$ is a Q-quasi-antiorder relation on $(T_s, =, \neq, \alpha)$.

Proof: Since T is a subsemigroup of S, then $\pi(T) = \{aq : a \in T\}$ is a subsemigroup of S/q. Hence $T_s = \pi^{-1}(\pi(T)) = \{\pi^{-1}(xq)\} : x \in T\}$ is a subsemigroup of S.

Let $\eta = \pi | T_s$ be a restriction of π to T_s . Then η is a strongly extensional reverse isotone homomorphism of $(T_s, =, \neq, \cdot, \alpha)$ to $(S/q, =_1, \neq_1, \cdot_1, \theta)$. Since, for any $a, b \in T_s, (a, b) \in \eta^{-1}(\theta)$ is equivalent to $(\pi(a), \pi(b)) \in \theta$, i.e. to $(a, b) \in \tau$, and $a(\eta^{-1}(\theta) \cup (\eta^{-1}(\theta))^{-1})$ $= \{x \in T_s : (a, x) \in \eta^{-1}(\theta) \lor (x, a) \in \eta^{-1}(\theta)\}$ $= \{x \in T_s : (\pi(a), \pi(x)) \in \theta \lor (\pi(x), \pi(a)) \in \theta\}$ $= \{x \in T_s : (a, x) \in \tau \lor (x, a) \in \tau\}$ $= \{x \in S : x \in T_s \land ((a, x) \in \tau \lor (x, a) \in \tau)\} = aq$

we may regard $\tau = \eta^{-1}(\theta)$ as a quasi-antiorder on $(T_s, =, \neq, \cdot, \alpha)$. Indeed, for any a, b of T_s there exist elements x, y of T such that $a \in (\pi^{-1} \circ \pi)(x)$ and $b \in (\pi^{-1} \circ \pi)(y)$. Hence, out of $(a, b) \in \alpha$, we conclude that there exist elements x, y of T such that $((\pi^{-1} \circ \pi)(x), (\pi^{-1} \circ \pi)(y)) \in \alpha$ and $(\pi(x), \pi(y)) \in$ $\pi \circ \alpha \circ \pi^{-1} = \theta$. Thus, $(x, y) \in \tau = \pi^{-1}(\theta)$. So, $(a, b) \in q^C \circ \pi^{-1}(\theta) \circ q^C$. Therefore, $\pi^{-1}(\theta)$ is a Q-quasi-antiorder on T_s . q.e.d.

The main result of this paper is the following theorem:

Theorem 2.2 : Suppose that hypothesis' as in the Theorem 1. Then, $\alpha_t = \alpha \cap (T \times T)$ is an antiorder and $\tau_t = \tau \cap (T \times T)$ is a quasi-antiorder on $(T, =, \neq, \cdot, \alpha_t)$ such that $\theta_t = \pi \circ \alpha_t \circ \pi^{-1}$ is induced anti-order and, if the apartness on S/q is tight, the following isomorphism $(T/q_t, =_1, \neq_1, \cdot_1, \theta_t) \cong (T_s/q, =_1, \neq_1, \cdot_1, \theta)$ holds as anti-ordered semigroups, where $q_t = \tau_t \cup (\tau_t)^{-1}$ is corresponding anticongruence on T.

Proof: By Theorem 2.1 and Lemma 1.1, $(T_s/q, =_1, \neq_1, \cdot_1, \theta)$ is an anti-ordered semigroup. Define $\pi_t : T \longrightarrow T_s/q$ by $\pi_t(a) = aq$ for any $a \in T$. Thus, π_t is a strongly extensional and surjective mapping. Indeed, if xq is an arbitrary element of T_s/q , then there exists an element x' of T such that $(x, x') \in q^C$ and $\pi_t(x') =_1 xq$. Further on, if xq and yq be elements of T_s/q with $xq \neq_1 yq$, then there exist elements $x', y' \in T$ such that $\pi_t(x') = xq, \pi_t(y') = yq$. Out of $(x, y) \in q \Longrightarrow (x, x') \in q \lor (x', y') \in q \subseteq \neq \lor (y', y) \in q$ we conclude $x' \neq y'$. For x, y of T, we have

$$\pi_t(xy) = (xy)q = (xq) \cdot_1 (yq) = \pi_t(x) \cdot_1 \pi_t(y); \text{ and} (\pi_t(x), \pi_t(y)) \in \theta \iff (xq, yq) \in \theta \iff (x, y) \in \tau.$$

It is easy to check that α_t is an anti-order on T and $\theta_t = \pi \circ \alpha_t \circ \pi^{-1}$ on T/q_t respective. Thus, π_t is a strongly extensional isotone and reverse isotone epimorphism of $(T, =, \neq, \cdot, \alpha_t)$ onto $(T_s/q, =_1, \neq_1, \cdot_1, \theta)$. Since

$$(\pi_t)^{-1}(\theta) = \{(x, y) \in T \times T : (\pi_t(x), \pi_t(y)) \in \theta\}$$
$$= \{(x, y) \in T \times T : (qx, qy) \in \theta\}$$

 $= \{(x,y) \in T \times T : (x,y) \in \tau\} = \tau \cap (T \times T) = \tau_t,$

by Lemma 2 we conclude that τ_t is a quasi-antiorder on $(T, =, \neq, \cdot, \alpha_t)$. Let $x, y \in T_s$ ne arbitray elements of T_s such that $(xq, yq) \in \theta$. Then there exist elements x' and y' of T with $(x, x') \bowtie q$, $(y, y') \bowtie q$ and $(x, y) \in \tau \subseteq \alpha$. So, we have $\pi_t(x') = xq$, $\pi_t(y') = yq$ and $(x', y') \in \alpha$ Therefore, $(x', y') \in \alpha_t$. If the apartness \neq_1 on S/q is tight, $(T/q_t, =_1, \neq_1, \cdot_1, \theta_t) \cong (T_s/q, =_1, \neq_1, \cdot_1, \theta)$ as anti-ordered semigroups by Lemma 1.2. q.e.d.

References

- [1] E.Bishop: Foundation of Constructive Analysis; McGraw-Hill, NY 1967.
- [2] R. Mines, F. Richman and W. Ruitenburg: A Course of Constructive Algebra; Springer-Verlag, New York 1988.
- [3] D.A.Romano: Some Relations and Subsets of Semigroup with Apartness Generated by the Principal Consistent Subset; Univ. Beograd, Publ. Elektroteh. Fak. Ser. Math, 13 (2002), 7-25
- [4] D.A.Romano: A Note on Quasi-antiorder in Semigroup; Novi Sad J. Math., 37(1) (2007), 3-8
- [5] D.A.Romano: A Remark on Coequality Relation on Anti-ordered Set; Inter. J. Contemp. Math. Sciences, 3(1)(2008), 43-48
- [6] D.A.Romano: An Isomorphism Theorem for Anti-ordered Sets; Filomat, 22(1)(2008), 145-160
- [7] D.A.Romano: Isomorphism Theorems for QA-mappings; Inter. J. Contemp. Math. Sciences, 3(14)(2008), 695-701
- [8] A. S. Troelstra and D. van Dalen: *Constructivism in Mathematics, An Introduction, Volume* II; North Holland, Amsterdam 1988.

Received: June 30, 2008