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Abstract

In this paper we give another isomorphism theorem on anti-ordered
semigroups.
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1 Introduction and preliminaries

Our setting is the Bishop’s constructive mathematics ([1], [2], [7]). Let (S, =
, �=, ·) be a semigroup with apartness in the sense of paper [3], where ’�=’ is a
binary relation on X which satisfies the following properties
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¬(x �= x), x �= y =⇒ y �= x, x �= z =⇒ x �= y ∨ y �= z,
x �= y ∧ y = z =⇒ x �= z

and

(∀a, b, x ∈ S)((ax �= bx =⇒ a �= b) ∧ (xa �= xb =⇒ a �= b)).

The apartness is tight if ¬(x �= y) =⇒ x = y holds. Let Y be a subset of
S and x ∈ S. The subset Y of S is strongly extensional in S if and only
if y ∈ Y =⇒ y �= x ∨ x ∈ Y holds ([2],[8]). If x ∈ S, we defined ([3])
x �� Y ⇐⇒ (∀y ∈ Y )(y �= x). Let f : (S, =, �=, ·) −→ (T, =, �=, ·) be a
mapping. We say that it is:
(a) f is strongly extensional if and only if (∀a, b ∈ S)(f(a) �= f(b) =⇒ a �= b);
(b) f is an embedding if and only if (∀a, b ∈ S)(a �= b =⇒ f(a) �= f(b)).
Let α ⊆ S×T and β ⊆ T ×Z be relations. The filled product ([3]) of relations
α and β is the relation

β ∗ α = {(a, c) ∈ S × Z : (∀b ∈ T )((a, b) ∈ α ∨ (b, c) ∈ β}.
A relation q ⊆ S × S is an anticongruence relation on S if and only if holds:

q ⊆�=, q ⊆ q−1, q ⊆ q ∗ q,

(∀a, b, x ∈ S)(((ax, bx) ∈ q =⇒ (a, b) ∈ q) ∧ ((xa, xb) ∈ q =⇒ (a, b) ∈ q)).

If q is an anticongruence on semigroup (S, =, �=, ·), we can construct factor-
semigroup (S/q, =1, �=1, ·1) with

aq =1 bq ⇐⇒ (a, b) �� q, aq �=1 bq ⇐⇒ (a, b) ∈ q, (aq) ·1 (bq) = (ab)q.

A relation α on S is antiorder ([4]) on S if and only if

α ⊆�=, α ⊆ α ∗ α, �=⊆ α ∪ α−1,

(∀a, b, x ∈ S)(((ax, bx) ∈ α =⇒ (a, b) ∈ α) ∧ ((xa, xb) ∈ α =⇒ (a, b) ∈ α)).

Let f : (S, =, �=, ·, α) −→ (T, =, �=, ·, β) be a strongly extensional homomor-
phism of ordered semigroups under antiorders. f is called isotone if (∀x, y ∈
S)((x, y) ∈ α =⇒ (f(x), f(y)) ∈ β); f is called reverse isotone if and only if
(∀x, y ∈ S)((f(x), f(y)) ∈ β =⇒ (x, y) ∈ α). The strongly extensional map-
ping f is called an isomorphism if it is injective and embedding, onto, isotone
and reverse isotone. S and T called isomorphic, in symbol S ∼= T , if exists an
isomorphism between them.
As in [4] a relation τ ⊆ S × S is a quasi-antiorder on S if and only if

τ ⊆ α(⊆�=), τ ⊆ τ ∗ τ

(∀a, b, x ∈ S)(((ax, bx) ∈ α =⇒ (a, b) ∈ α) ∧ ((xa, xb) ∈ α =⇒ (a, b) ∈ α)).
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For more information on these relations readers can see in the papers [4]-[7].

The first proposition gives some information about quasi-antiorders:

Lemma 1.1 ([4]) Let (S, =, �=, ·) be an anti-ordered semigroup and τ is a
quasi-antiorder on S. Then, the relation q = τ∪τ−1 is an anticongruence on S,
and S/q = {aq : a ∈ S} with the anti-order (aq, bq) ∈ θ ⇐⇒ (a, b) ∈ τ (a, b ∈
S) is an anti-ordered semigroup and π : S −→ S/q, defined by π(a) = aq, is
an reverse isotone strongly extensional homomorphism from S onto S/q.

Lemma 1.2 ([6], [7]) Let (S, =, �=, ·, α) and (T, =, �=, ·, β) be anti-ordered
semigroups and ϕ : S −→ T an reverse isotone strongly extensional homomor-
phism. Then,

ϕ−1(β) = {(a, b) ∈ X × X : (ϕ(a), ϕ(b)) ∈ β}
is a quasi-antiorder on S with ϕ−1(β) ∪ (ϕ−1(β))−1 = Cokerϕ , and if the
apartness in T is tight, then S/Coker ∼= Imϕ as anti-ordered sets.

Let (S, =, �=, ·, α) be an anti-ordered semigroup. A quasi-antiorder σ on S is
called a quotient quasi-antiorder (abbreviated to Q-quasi-antiorder) on S ([7])
if holds

σ ⊆ α ⊆ qC ◦ σ ◦ qC.

If q is an anticongruence on anti-ordered semigroup (S, =, �=, ·, α), then the
semigroup S/q is not an anti-ordered semigroup, in general case. By result in
[5], the relation π ◦ α ◦ π−1 is an antiorder on S/q if and only if the relation
τ = qC ◦ α ◦ qC is a quasi-antiorder on S such that q = τ ∪ τ−1. In papers [4],
[6] and [7] the third author described some isomorphisms between ordered sets
under antiorders. This paper is a continuation of [7]. Here, we give another
isomorphism theorem on anti-ordered semigroups.

2 The Results

Let (S, =, �=, ·, α) be an anti-ordered semigroup, τ a quasi-antiorder on S under
α and (T, =, �=, ·) a subsemigroup of S. Let Ts = ∪{(π−1 ◦π)(x) : x ∈ T}. It is
clear that T ⊆ Ts. It is clear that the following equivalence holds: a ∈ Ts ⇐⇒
(∃x ∈ T )((x, a) �� q). Our first result is:

Theorem 2.1 : Let (S, =, �=, ·, α) be an anti-ordered semigroup such that
θ = π ◦ α ◦ π−1 is an anti-order on S/q where q = π−1(θ) ∪ (π−1(θ))−1 is an
anticongruence on S. If T is a subsemigroup of S, then Ts is a subsemigroup
of S and τ = π−1(θ) is a Q-quasi-antiorder relation on (Ts, =, �=, α) .
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Proof : Since T is a subsemigroup of S, then π(T ) = {aq : a ∈ T} is a
subsemigroup of S/q. Hence Ts = π−1(π(T )) = {π−1(xq)) : x ∈ T} is a
subsemigroup of S.
Let η = π|Ts be a restriction of π to Ts. Then η is a strongly extensional reverse
isotone homomorphism of (Ts, =, �=, ·, α) to (S/q, =1, �=1, ·1, θ). Since, for any
a, b ∈ Ts, (a, b) ∈ η−1(θ) is equivalent to (π(a), π(b)) ∈ θ, i.e. to (a, b) ∈ τ , and

a(η−1(θ) ∪ (η−1(θ))−1)
= {x ∈ Ts : (a, x) ∈ η−1(θ) ∨ (x, a) ∈ η−1(θ)}
= {x ∈ Ts : (π(a), π(x)) ∈ θ ∨ (π(x), π(a)) ∈ θ}
= {x ∈ Ts : (a, x) ∈ τ ∨ (x, a) ∈ τ}
= {x ∈ S : x ∈ Ts ∧ ((a, x) ∈ τ ∨ (x, a) ∈ τ)} = aq

we may regard τ = η−1(θ) as a quasi-antiorder on (Ts, =, �=, ·, α). Indeed,
for any a, b of Ts there exist elements x, y of T such that a ∈ (π−1 ◦ π)(x)
and b ∈ (π−1 ◦ π)(y). Hence, out of (a, b) ∈ α, we conclude that there exist
elements x, y of T such that ((π−1 ◦π)(x), (π−1 ◦π)(y)) ∈ α and (π(x), π(y)) ∈
π ◦ α ◦ π−1 = θ. Thus, (x, y) ∈ τ = π−1(θ). So, (a, b) ∈ qC ◦ π−1(θ) ◦ qC .
Therefore, π−1(θ) is a Q-quasi-antiorder on Ts. q.e.d.

The main result of this paper is the following theorem:

Theorem 2.2 : Suppose that hypothesis’ as in the Theorem 1. Then, αt =
α ∩ (T × T ) is an antiorder and τt = τ ∩ (T × T ) is a quasi-antiorder on
(T, =, �=, ·, αt) such that θt = π ◦ αt ◦ π−1 is induced anti-order and, if the
apartness on S/q is tight, the following isomorphism (T/qt, =1, �=1, ·1, θt) ∼=
(Ts/q, =1, �=1, ·1, θ) holds as anti-ordered semigroups, where qt = τt ∪ (τt)

−1 is
corresponding anticongruence on T .

Proof : By Theorem 2.1 and Lemma 1.1, (Ts/q, =1, �=1, ·1, θ) is an anti-ordered
semigroup. Define πt : T −→ Ts/q by πt(a) = aq for any a ∈ T . Thus, πt is
a strongly extensional and surjective mapping. Indeed, if xq is an arbitrary
element of Ts/q, then there exists an element x′ of T such that (x, x′) ∈ qC

and πt(x
′) =1 xq. Further on, if xq and yq be elements of Ts/q with xq �=1 yq,

then there exist elements x′, y′ ∈ T such that πt(x
′) = xq, πt(y

′) = yq. Out of
(x, y) ∈ q =⇒ (x, x′) ∈ q ∨ (x′, y′) ∈ q ⊆�= ∨ (y′, y) ∈ q we conclude x′ �= y′.
For x, y of T , we have

πt(xy) = (xy)q = (xq) ·1 (yq) = πt(x) ·1 πt(y); and

(πt(x), πt(y)) ∈ θ ⇐⇒ (xq, yq) ∈ θ ⇐⇒ (x, y) ∈ τ .

It is easy to check that αt is an anti-order on T and θt = π ◦ αt ◦ π−1 on
T/qt respective. Thus, πt is a strongly extensional isotone and reverse isotone
epimorphism of (T, =, �=, ·, αt) onto (Ts/q, =1, �=1, ·1, θ). Since

(πt)
−1(θ) = {(x, y) ∈ T × T : (πt(x), πt(y)) ∈ θ}

= {(x, y) ∈ T × T : (qx, qy) ∈ θ}
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= {(x, y) ∈ T × T : (x, y) ∈ τ} = τ ∩ (T × T ) = τt,

by Lemma 2 we conclude that τt is a quasi-antiorder on (T, =, �=, ·, αt). Let
x, y ∈ Ts ne arbitray elements of Ts such that (xq, yq) ∈ θ. Then there exist
elements x′ and y′ of T with (x, x′) �� q, (y, y′) �� q and (x, y) ∈ τ ⊆ α. So,
we have πt(x

′) = xq, πt(y
′) = yq and (x′, y′) ∈ α Therefore, (x′, y′) ∈ αt. If

the apartness �=1 on S/q is tight, (T/qt, =1, �=1, ·1, θt) ∼= (Ts/q, =1, �=1, ·1, θ) as
anti-ordered semigroups by Lemma 1.2. q.e.d.
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